
Scot’s Ubuntu NAS Documentation
Release 0.1.0beta

Scot W. Stevenson

Jun 15, 2019

Contents:

1 Introduction 1

2 Goals 3
2.1 House overview . 3
2.2 Network . 3
2.3 NAS duties . 4
2.4 Threat assessment . 4
2.5 NAS overview . 4

3 Hardware 5
3.1 Motherboard . 5
3.2 Drives . 5
3.3 Extra cooling fan . 5
3.4 Other hardware . 6
3.5 IPMI . 6
3.6 BIOS . 6
3.7 LSI interface . 6

4 Ubuntu Server 7
4.1 Memory Test . 7
4.2 Basic installation . 8

5 Livepatch 9
5.1 Links . 9

6 Services 11
6.1 mDNS (Avahi) . 11
6.2 Network . 11
6.3 SSH . 12

7 Users 15

8 Mail 17
8.1 Links . 18

9 SMART 19
9.1 Links . 19

10 UPS 21
10.1 Links . 22

11 ZFS 23

i

11.1 The current setup . 23
11.2 Email notifications . 24

12 Containers 25
12.1 Glances . 25
12.2 Emby . 26
12.3 Watchtower . 26
12.4 Time Machine . 27
12.5 Links . 27

13 NFS 29
13.1 Links . 30

14 Snapshots 31
14.1 Deleting snapshots . 33

15 Rsync 35
15.1 Links . 36

16 Firewall 37
16.1 Links . 39

17 Tests 41
17.1 Links . 41

18 Speed 43
18.1 Summary . 44
18.2 Links . 44

19 Indices and tables 45

ii

CHAPTER 1

Introduction

In 2019, the motherboard of my FreeNAS server died. Instead of simply replacing it and continuing, I decided
to switch to a self-created NAS based on Ubuntu Server 18.04 LTS with ZFS and containers (Docker). This
document is based on the line-by line notes I made, and provided for anybody who is thinking about building such
a system themselves.

However, you probably don’t want to do this. I’m no server expert, this machine is set up for a very special use
case and threat scenario, and this text doesn’t even attempt to provide a complete guide. One reason I wrote it, in
fact, is to learn reStructured text, Sphinx, and Read the Docs for other projects.

Still, if you feel you must, by all means read on.

Warning: Follow the instructions and suggestions in this text at your own risk. There is a very real chance
that you could lose data, even all of it. I take no responsibility for anything bad or even mildly irritating that
happens.

If you need more hand-holding: FreeNAS (http://freenas.org) comes with extensive documentation and a very
helpful community. It served me well for years, and if I hadn’t being trying to learn more about servers and
containers, I would have stayed with it. FreeNAS comes with the ZFS file system as well.

If you need lots more hand-holding: There are a bunch of commercial NAS vendors, for example Synology or
QNAP. Usually, you just need to add the drive and the setup does the rest; however, they rarely come with
ZFS.

If you need more power and features: Ansible-NAS (https://github.com/davestephens/ansible-nas) is a far
more ambitious variant of a Ubuntu NAS by Dave Stephens. As the name says, it makes extensive use
of Ansible for configuration, and comes with a higher level of configuration. Full disclosure: I have con-
tributed to the documentation.

The actual files for this text live at https://github.com/scotws/ubuntu-nas. For suggestions, corrections, and addi-
tions, please create a pull request there.

License: CC-BY-SA-4.0 (https://creativecommons.org/licenses/by-sa/4.0/)

1

http://freenas.org
https://github.com/davestephens/ansible-nas
https://github.com/scotws/ubuntu-nas
https://creativecommons.org/licenses/by-sa/4.0/

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

2 Chapter 1. Introduction

CHAPTER 2

Goals

This introduces the basic setup in the house where the NAS will be installed, the other machines on the network,
and some of the names and addresses used.

Note: Some of this information differs from the actual setup for security reasons. It is possible that this has
created inconsistencies at some points when I didn’t pay attention. Please report these as errors.

2.1 House overview

The NAS is part of a computer setup in a single-family house with four human users and two cats. The local
network is not accessible from the outside. Internet connection is through a DSL modem, which also (currently)
serves as the DHCP server. The local DNS connection goes through PiHole (https://pi-hole.net/) on a Raspberry
Pi.

There are also Windows computers in the house, mainly for gaming, but they are considered untrusted by default
and may not access the NAS.

Various people work at various strange times in the house, so the Raspberry Pi and the NAS itself are on all the
time. Also, cats have weird sleep schedules.

2.2 Network

To keep things simple, all machines will be considered to be part of the IPv4 local network 192.168.13.0/24. For
the purpose of this document, the server’s name will be home and the main computer we work from chell, after
the character in the Valve computer game. Most machines are assigned static addresses. In particular:

home 192.168.13.2 NAS Ubuntu Server
chell 192.168.13.20 user PC Ubuntu Desktop
worker 192.168.13.21 user PC Ubuntu Desktop
mediator 192.168.13.22 laptop MacOS

There are also various other machines such as mobile phones, Chromebooks and iPads that connect to the network
but are not relevant here.

3

https://pi-hole.net/

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

In practice, most user addressing uses mDNS (zero configuration) internally. As we will see later, this means we
access the NAS with commands such as

ssh home.local

This has the pleasant side effect of automatically locking out the Windows machines, which do not support zero
configuration out of the box.

2.3 NAS duties

The NAS in this house is expected to provide the following services, in order of importance:

• Storage for documents and media, especially family photos

• Auto backup for the users’ data from Linux and MacOS machines (not: Windows)

• Low-traffic Emby server (usually only one user)

• Serve NFS shares to one other Ubuntu machine chell

• Allow experimenting with containers and virtual machines

In the future, other functions might be added such as game server or a family chat bot.

The storage function has the highest priority, especially for family photos, which are considered irreplaceable. As
such, they must be protected from bitrot by a self-healing file system. In practice, this means either ZFS or Btrfs.
ZFS has been in production longer, and Btrfs is far less battle-tested and comes with various warnings about how
things are (still) not production ready. Therefore, ZFS is the main mass storage file system for the NAS.

Important: At the most basic level, this NAS is a life-support system for ZFS.

The other functions are secondary.

2.4 Threat assessment

The NAS is operating in a low-threat environment. It is not accessible from the internet, there is especially no
VPN or other (known) way to reach it from outside. The machine itself is physically secured in the sense that if
bad people are in my house, the threat to the NAS will not be my first concern. Still, the setup will follow best
practices as far as possible with hardening and firewall.

The main threat here is data loss through hard drive failure, power outage, cat intervention, or other such factors.
The main strategy here is multiple redundant backups, some of them off-site.

The secondary threat is user screw-ups, especially accidentally deleting data.

2.5 NAS overview

Though the NAS can be accessed directly by the console, mostly it will be administered from the computer chell.
This functions as a jump server - other machines will be barred from accessing the NAS as much as possible.
Since chell is powered down when not in use, this means that accessing the NAS through the network using ssh is
usually not possible at all.

4 Chapter 2. Goals

CHAPTER 3

Hardware

Most of the hardware was taken from the previous FreeNAS install.

3.1 Motherboard

The main difference is the new motherboard, a Supermicro X10SDV-4C-7TP4F Out of the box, you can attach 20
SATA 3.0 drives and install one M.2 NVMe PCIe 3.0 memory stick. This is currently not used, as are the two
SFP+ 10 GBit Ethernet ports. They are for later expansions.

The processor is an Intel Xeon D-1518 4/8 core 2.20 GHz, which is overkill for current use but should be powerful
enough for later virtual machines.

3.2 Drives

In this first incarnation, the root file system for Ubuntu 18.04 LTS is on a 120 GB Intel 540S SSD. Root on ZFS
is still too complicated for this project.

Note: At time of writing, ZFS on Linux 0.8 was not yet integrated to the Ubuntu kernel, this is using 0.7.9-
3ubuntu6

The mass storage was inherited from the FreeNAS build and consists of one ZFS pool (“tank”) constructed from
two RaidZ VDEVs in 3/3/3 TB and 4/4/4 TB configuration. The total size is 14 TB on six drives.

3.3 Extra cooling fan

The X10SDV-4C-7TP4F is shipped without a CPU cooler, which doesn’t work. Instead of buying an extra cooler
and replacing the passive heat sink, we install a jury-rigged fan that blows air on the heat sink.

5

https://www.supermicro.com/products/motherboard/Xeon/D/X10SDV-4C-7TP4F.cfm

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

3.4 Other hardware

RAM: 2 x 8 GB DDR4 ECC RAM This is left over from a different project. As finances allow, these will be
replaces by 4 x 16 GB ECC RAM for a total of 64 GB. Though ZFS loves RAM and the maximum for the
board is 128 GB, this should be enough for our use.

Graphics: VGA built-in In contrast to the usual setup with servers, there is an old 4:3 monitor attached with
VGA. Also, there is keyboard. Both are in the same room as the main computer. This means we can do
stuff directly at the console which otherwise would require ssh.

Case: Fractal Design Define R5 White FD-CA-DEF-R5-WT Chosen for the soundproofing, provides easy
storage for eight HDs and two SSDs.

UPS: APC Back-UPS 700VA BX700U-GR

Power: Seasonic SSR-450RM Active PFC G-450 (450W, ATX 12V)

3.5 IPMI

The motherboard comes with IPMI enabled through either a separate network interface or shared with on of the
normal 1 GB Ethernet connections. We really don’t need it, but it’s there and we have to secure it.

In our set, IPMI gets an address at boot via DHCP, for example something like 192.168.13.100. Write it down
from the boot screen and then when the server is powered up, use a web browser to access the IPMI interface.

The most important thing is to change the default Supermicro user name and password from ADMIN/ADMIN to
something different.

3.5.1 Links

https://www.servethehome.com/basic-bmc-and-ipmi-management-security-practices/

3.6 BIOS

Make sure that virtualization support is enabled. Also, the boot order can be tricky to get right.

3.7 LSI interface

The 16 SATA port interface card will show its own boot screen during startup. We do not need to change anything.
Note the X10SDV-4C-7TP4F only includes the “dumb” IT mode, so we don’t have to flash the BIOS to avoid
hardware RAID configurations which just get in ZFS’ way.

6 Chapter 3. Hardware

https://www.servethehome.com/basic-bmc-and-ipmi-management-security-practices/

CHAPTER 4

Ubuntu Server

We use Ubuntu Server 18.04 LTS which is supported until 2023. We download it the normal way from https:
//www.ubuntu.com/download/server . We check to make sure that the file is intact by running

echo "ea6ccb5b57813908c006f42f7ac8eaa4fc603883a2d07876cf9ed74610ba2f53 *ubuntu-18.
→˓04.2-live-server-amd64.iso" | sha256sum --check

which gives you an OK. Move to USB stick with Startup Disk Creator.

4.1 Memory Test

Before we can proceed, we use the Ubuntu USB stick’s memory test function to make sure that our RAM is okay.

This can take hours.

7

https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

4.2 Basic installation

After the memory test, reboot and start installing the server.

Warning: During the install, do not select the option to install Docker. This will install Docker into a snap,
which will then not work correctly. In fact, you probably want to avoid all snaps.

Afterwards, we update the system and reboot to be sure:

sudo apt update
sudo apt upgrade
sudo reboot

The name of the user we install as will be user1 in our examples.

Note: Most of the examples here have sudo in front of them to mark that they have to be executed by the
superuser. If you tire of this (and you will), use

sudo su -

to switch to root permanently. Remember to exit as soon as possible.

8 Chapter 4. Ubuntu Server

CHAPTER 5

Livepatch

Canonical Livepatch automatically updates some parts of the kernel without rebooting.

Log into https://ubuntu.com/livepatch and get the id number. On the machine,

sudo snap install canonical-livepatch
sudo canonical-livepatch enable <NUMBER>
canonical-livepatch status --verbose

We don’t do this on chell because we reboot the thing all the time anyway.

5.1 Links

• http://blog.dustinkirkland.com/2016/10/canonical-livepatch.html

9

https://ubuntu.com/livepatch
http://blog.dustinkirkland.com/2016/10/canonical-livepatch.html

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

10 Chapter 5. Livepatch

CHAPTER 6

Services

6.1 mDNS (Avahi)

Zero configuration, also known as mDNS or Avahi on Linux, is not installed by default with Ubuntu Server. This
means we can’t access .local addresses. This is our primary main way of talking to machines. We will want to
do this via the console.

sudo apt install avahi-daemon
sudo apt install avahi-utils

Note we will have to punch a hole in the firewall later for UDP 5353 for local machines.

To get a list of machines on the network, use

avahi-browse -a

6.1.1 Links

• https://kb.iweb.com/hc/en-us/articles/360005117952-Guide-to-Multicast-DNS-mDNS-security-issues

6.2 Network

We want home to have a static address. In fact, our network is small and unchanging enough we can use static
addresses for a lot of things.

sudo vi /etc/netplan/50-cloud-init.yaml

We change this to:

network:
ethernets:

eno1:
addresses: [192.168.13.2/24]
gateway4: 192.168.13.1
nameservers:

(continues on next page)

11

https://kb.iweb.com/hc/en-us/articles/360005117952-Guide-to-Multicast-DNS-mDNS-security-issues

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

(continued from previous page)

addresses: [192.168.13.8,8.8.8.8]
dhcp4: no

eno2:
dhcp4: true

eno7:
dhcp4: true

eno8:
dhcp4: true

version: 2

Despite the scary text in the file, this survives reboots every time. Here, restart the network. From the terminal,
execute

sudo netplan apply

In the router, make sure that we get the same address every time via DHCP for this machine.

6.2.1 Links

• https://websiteforstudents.com/configure-static-ip-addresses-on-ubuntu-18-04-beta/

• https://www.ostechnix.com/how-to-configure-ip-address-in-ubuntu-18-04-lts/

6.3 SSH

Though we use the console for lots of stuff, in practice, we’ll want to be able to access the server via ssh. Remem-
ber chell is the jump server for home, other machines should not be able to access it.

We change a bunch of options to “harden” the server. We start by editing /etc/ssh/sshd_config:

AllowUsers user1
ClientAliveCountMax 0
ClientAliveInterval 300
IgnoreRhosts yes
LoginGraceTime 2m
MaxAuthTries 5
MaxSessions 3
PermitEmptyPasswords no
PermitRootLogin no
Port 2019
PrintMotd yes
Protocol 2
X11Forwarding no

Note that we change the default port (to the year this was written). We’ll go over some of these later when we take
a look at the firewall. Then restart the ssh demon.

sudo systemctl restart ssdh

We don’t want to let anybody log in with just their password, instead, we need them to have public keys generated
on chell. We will then copy it over from there to home. Don’t use a passphrase when prompted:

ssh-keygen
cat .ssh/id_rsa.pub
ssh-copy-id -p 2019 -i ~/.ssh/id_rsa.pub user1@home.local

On home, we then edit /etc/sshd_config to include:

12 Chapter 6. Services

https://websiteforstudents.com/configure-static-ip-addresses-on-ubuntu-18-04-beta/
https://www.ostechnix.com/how-to-configure-ip-address-in-ubuntu-18-04-lts/

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

PubkeyAuthentication yes
PasswordAuthentication no

Restart again. Because logging in with a different port and all of that gets old fast, we create a file ~/.ssh/
config on home with the content:

Host home
Hostname home.local
User user1
Port 2019

Now we can just login from chell with ssh home as user1. We cannot just log in via password. Remember chell
is the jump server for home.

6.3.1 Links

• https://linux-audit.com/audit-and-harden-your-ssh-configuration/

• https://linux-audit.com/using-ssh-keys-instead-of-passwords/)

6.3. SSH 13

https://linux-audit.com/audit-and-harden-your-ssh-configuration/
https://linux-audit.com/using-ssh-keys-instead-of-passwords/

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

14 Chapter 6. Services

CHAPTER 7

Users

We have four users on the system, here we’ll name them user1 to user4. We already have user1 from setting up
the operating system. For NFS, we have to make sure that the UID and GID are the same on chell and home.

sudo adduser user2
sudo adduser user3
sudo adduser user4

This gives us:

user1 1000:1000
user2 1001:1001
user3 1002:1002
user4 1003:1003

Add group home with GUID 1010 (used for pictures):

sudo groupadd -g 1010 home

sudo adduser user1 home
sudo adduser user2 home
sudo adduser user3 home
sudo adduser user4 home

The cats do not need separate user accounts, they just use root when they feel like it.

15

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

16 Chapter 7. Users

CHAPTER 8

Mail

We need a basic mail setup to send notifications from ZFS and other systems in case of an error. We use Postfix.

sudo apt install postfix

During setup, configure for an “Internet Site”. We use home.local as the sending address and smtp.gmail.
com:587 as the relay host. Go to https://myaccount.google.com/apppasswords to get a password for “chell mail”
and create the file /etc/postfix/sasl/sasl_passwd with the content:

[smtp.gmail.com]:587 <USERNAME>@gmail.com:<PASSWORD>

This needs to be added to a data bank:

sudo postmap /etc/postfix/sasl/sasl_passwd

In /etc/postfix/main.cf set the line

relayhost = [smtp.gmail.com]:587

Shorten the line with the banner to

smtpd_banner = $myhostname ESMTP

for security reasons. And add the bunch of lines

Enable SASL authentication
smtp_sasl_auth_enable = yes
Disallow methods that allow anonymous authentication
smtp_sasl_security_options = noanonymous
Location of sasl_passwd
smtp_sasl_password_maps = hash:/etc/postfix/sasl/sasl_passwd
Enable STARTTLS encryption
smtp_tls_security_level = encrypt
Location of CA certificates
smtp_tls_CAfile = /etc/ssl/certs/ca-certificates.crt

Edit aliases file with sudo vi /etc/aliases so it reads:

17

https://myaccount.google.com/apppasswords

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

postmaster: root
admin: root
ubuntu: root
root: <USERNAME>@gmail.com

The run sudo newaliases for the databank file and sudo systemctl restart postfix. Test with a mail that ends with a
dot:

sendmail <USERNAME>@gmail.com
From: <USERNAME>@<OTHER_ADDRESS>
Subject: Test mail
This is a test email

This is basic mail setup. We need the mailutils package for further use.

sudo apt install mailutils

Note: This setup will now allow us to send all kinds of mail with

mail -s "<SUBJECT>" the.address@the.address
<MORE TEXT>
<CTRL>-d

8.1 Links

• https://www.linode.com/docs/email/postfix/configure-postfix-to-send-mail-using-gmail-and-google-apps-on-debian-or-ubuntu/

18 Chapter 8. Mail

https://www.linode.com/docs/email/postfix/configure-postfix-to-send-mail-using-gmail-and-google-apps-on-debian-or-ubuntu/

CHAPTER 9

SMART

Installing the SMART disk drive monitoring system. This assumes email notifications are set up correctly.

sudo apt install smartmontools

Edit /etc/default/smartmontools so that start_smartd=yes. Now edit /etc/smartd.conf
with a first test setup of

DEVICESCAN -m <USERNAME>@gmail.com -M test

Then restart the service with

sudo service smartd restart

Should send an email for every drive. Then edit the line to show

DEVICESCAN -a -s (S/../../1/19|L/../02/./21) -m <USERNAME>@gmail.com

Where -a is -H -f -t -l error -l selftest -C 197 -U 198. This does a short test every Mon-
day at 19:00h and a long test every second day of the month at 21:00h - make sure there isn’t a ZFS scrub at the
same time.

sudo service smartd restart

And restart the service again.

Note: NVMe SMART support is rudimentary, see https://www.smartmontools.org/wiki/NVMe_Support.

9.1 Links

• https://help.ubuntu.com/community/Smartmontools

• https://wiki.archlinux.org/index.php/S.M.A.R.T.

• https://www.smartmontools.org/browser/trunk/smartmontools/smartd.conf.5.in

19

https://www.smartmontools.org/wiki/NVMe_Support
https://help.ubuntu.com/community/Smartmontools
https://wiki.archlinux.org/index.php/S.M.A.R.T
https://www.smartmontools.org/browser/trunk/smartmontools/smartd.conf.5.in

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

20 Chapter 9. SMART

CHAPTER 10

UPS

This is with the UPS APC 700VA BX700U-GR

sudo apt install apcupsd
sudo cp /etc/apcupsd/apcupsd.conf /etc/apcupsd/apcupsd.conf.bak
sudo vi /etc/apcupsd/apcupsd.conf

Notes some of these are just the defaults.

ANNOY 300
ANNOYDELAY 60
BATTERYLEVEL 20
DATATIME 0
DEVICE
EVENTSFILE /var/log/apcupsd.events
EVENTSFILEMAX 10
KILLDELAY 0
LOCKFILE /var/lock
LOGSTATS off
MINUTES 10
NETSERVER on
NISIP 127.0.0.1
NISPORT 3551
NOLOGINDIR /etc
NOLOGON disable
ONBATTERYDELAY 6
POLLTIME 90
PWRFAILDIR /etc/apcupsd
SCRIPTDIR /etc/apcupsd
STATFILE /var/log/apcupsd.status
STATTIME 0
TIMEOUT 0
UPSCABLE usb
UPSCLASS standalone
UPSMODE disable
UPSNAME BX700U
UPSTYPE usb

We also have to edit

21

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

sudo vi /etc/default/apcupsd

and there set ISCONFIGURED=yes. Restart the service after configuration:

sudo systemctl restart apcupsd.service
sudo systemctl status apcupsd.service

The command sudo apcaccess gives a dump of features. Then to test the settings, stop the demon and run

sudo apctest

We still have to test it by pulling the plug.

10.1 Links

• http://www.apcupsd.org/manual/manual.html

• https://www.pontikis.net/blog/apc-ups-on-ubuntu-workstation)

22 Chapter 10. UPS

http://www.apcupsd.org/manual/manual.html
https://www.pontikis.net/blog/apc-ups-on-ubuntu-workstation

CHAPTER 11

ZFS

As described earlier, we use ZFS because it is one of the few file systems that can detect and correct bitrot. At
time of writing, Ubuntu is the only major Linux variant to support ZFS out of the box.

11.1 The current setup

Note: We inherited our data storage pool “tank” from the previous FreeNAS install, so there is currently no
discussion of how to setup and configure a ZFS pool and datasets.

We import the pool with zpool import -f tank. Since this computer will be used as a NAS, we don’t limit
the size of the ARC, which defaults to half the RAM.

sudo install zfsutils

We currently have the following file systems (“datasets”) for bulk storage:

tank/coldstore
tank/media
tank/pictures
tank/storage
tank/texts

Also, each of the users has a separate dataset for backups:

tank/h_user1
tank/h_user2
tank/h_user3
tank/h_user4

Finally, there is a file system for the Time Machine backups:

tank/TM_mediator

23

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

11.2 Email notifications

This assumes we have basic mail notifications working with postfix.

sudo vi /etc/zfs/zed.d/zed.rc

so that we have (note these are commented out by default):

ZED_EMAIL_ADDR="<USER1'S MAIL ADDRESS>"
ZED_EMAIL_PROG="mail"
ZED_EMAIL_OPTS="-s '@SUBJECT@' @ADDRESS@"
ZED_NOTIFY_VERBOSE=1
ZED_NOTIFY_DATA=1

Follow this with

sudo systemctl restart zed

Test with scrub of tank, should send mail.

sudo zpool scrub tank

We will setup snapshots in a later step.

11.2.1 Links

• https://github.com/zfsonlinux/zfs/issues/6246

24 Chapter 11. ZFS

https://github.com/zfsonlinux/zfs/issues/6246

CHAPTER 12

Containers

Note: We currently use Docker, though Podman might make more sense for a system this size because it doesn’t
need a separate demon and doesn’t run with root. However, Ubuntu currently has better support for Docker than
Podman.

You will remember we didn’t install Docker during the setups of the operating system because that would have
given us the wrong version.

Note: This is the easy way to install, though it doesn’t give you the newest version
(a common problem with Ubuntu). See https://www.digitalocean.com/community/tutorials/
how-to-install-and-use-docker-on-ubuntu-18-04 for instructions on how to install the program from the
official Docker repository.

The basic install of Docker is with

sudo apt install docker.io
sudo systemctl enable docker

The second line is responsible for autostarting. What follows are the individual container installations. We also
install a container for Time Machine backups, but we’ll get to that later.

12.1 Glances

Glances provides an overview of the system. Though there are monitors that provide more information, this seems
to be a good balance of size and function for a NAS with our profile.

sudo docker pull nicolargo/glances

Create a folder /root/Docker-scripts. There, create a file glances-docker.sh:

docker run -d \
--name glances-home \
--restart unless-stopped \
--publish 61208-61209:61208-61209 \

(continues on next page)

25

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

(continued from previous page)

--env GLANCES_OPT="-w" \
--volume /var/run/docker.sock:/var/run/docker.sock:ro \
--pid host \
docker.io/nicolargo/glances

We start with is sudo ./glances-docker.sh. To reach the interface, go to http://home.local:61208 .

Note: This might need some tweaking, because Glances is unhappy when 70 percent of memory is used, which
is normal for a NAS.

12.2 Emby

Emby is one of three options for TV and movie streaming, the other two are Plex and JellyFin. We create a volume
for configuration files, so we don’t have to reorganize every time there is a new version.

sudo docker pull emby/embyserver:latest
sudo docker volume create emby-config

Create a file in /root/Docker-scripts/ named emby-docker.sh with the content:

docker run -d \
--name emby-home \
--volume emby-config:/config \
--volume /tank/media/movies:/mnt/movies:ro \
--volume /tank/media/series:/mnt/tv:ro \
--publish 8096:8096 \
--publish 8920:8920 \
--restart unless-stopped \
--env UID=1000 \
--env GID=1000 \
emby/embyserver:latest

The actual media files are kept in the ZFS datasets tank/media, and we pass them ro (read-only) to be paranoid.
Run it and setup at http://home.local:8096 . During setup, set thread count to 4 for the moment.

12.2.1 Configuration backups

We keep a backup of the emby-config volume from /var/lib/docker/volumes/emby-config at
/tank/storage/BKU Emby/. The uncompressed size (02. June 2019) is about 3 GB.

12.3 Watchtower

Watchtower is a program to automatically update other containers. This seems a bit overkill for our small collec-
tion, but we might as well set it up.

sudo docker pull v2tec/watchtower

Create watchtower-docker.sh file in the usual folder, configured to run once a night:

docker run -d \
--name watchtower-home \
-v /var/run/docker.sock:/var/run/docker.sock \
v2tec/watchtower --schedule "0 0 5 * * *" --cleanup

26 Chapter 12. Containers

http://home.local:61208
http://home.local:8096

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

This runs the check once a day at five in the morning and gets rid of old stuff once it has updated.

12.4 Time Machine

We do this with Docker because Ubuntu (again) uses an ancient version of netatalk.

docker run -dit \
--name timemachine-home
--restart=unless-stopped
-v /tank/TM_mediator:/timemachine
-p 548:548
-p 636:636
--ulimit nofile=65536:65536

odarriba/timemachine

We have to run another line:

docker exec timemachine-home add-account user1 <PASSWORD> Hive-TM /timemachine

On the Mac, use COMMAND-K to input afp://192.168.13.2/Hive-TM which is the name of the share.
This could probably be home.local as well. Mount the drive that way by hand and then configure it as a new Time
Machine backup drive.

12.5 Links

• https://hub.docker.com/r/v2tec/watchtower/

• https://godoc.org/github.com/robfig/cron#hdr-CRON_Expression_Format

• https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04

• https://github.com/nicolargo/glances

• https://glances.readthedocs.io/en/stable/docker.html

• https://glances.readthedocs.io/en/stable/cmds.html#interactive-commands

• https://hub.docker.com/r/odarriba/timemachine/

• https://github.com/odarriba/docker-timemachine

12.4. Time Machine 27

https://hub.docker.com/r/v2tec/watchtower/
https://godoc.org/github.com/robfig/cron#hdr-CRON_Expression_Format
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-18-04
https://github.com/nicolargo/glances
https://glances.readthedocs.io/en/stable/docker.html
https://glances.readthedocs.io/en/stable/cmds.html#interactive-commands
https://hub.docker.com/r/odarriba/timemachine/
https://github.com/odarriba/docker-timemachine

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

28 Chapter 12. Containers

CHAPTER 13

NFS

Only operating systems from the Unix family - Linux, MacOS - will be accessing this NAS and the environment
is relatively secure, so we can use NFS instead of Samba for better performance.

sudo apt install nfs-kernel-server

We link the various datasets through a folder so we don’t have to export the actual datasets. This is experimental.

mkdir /exports

ln -s /tank/pictures/ /exports/pictures
ln -s /tank/coldstore/ /exports/coldstore
ln -s /tank/media/ /exports/media
ln -s /tank/storage/ /exports/storage
ln -s /tank/texts/ /exports/texts

In /etc/exports, add the following lines:

Note: We leave the addresses as 192.168.0.0 instead of 192.168.13.0 as might be expected because we’ll be
putting the high-speed SFP+ network on a different subnet at some point.

/exports *(ro,fsid=0,no_subtree_check)
/exports/pictures 192.168.0.0/255.255.0.0(rw,no_subtree_check)
/exports/coldstore 192.168.0.0/255.255.0.0(rw,no_subtree_check)
/exports/media 192.168.0.0/255.255.0.0(rw,no_subtree_check)
/exports/storage 192.168.0.0/255.255.0.0(rw,no_subtree_check)
/exports/texts 192.168.0.0/255.255.0.0(rw,no_subtree_check)

On the target machine, we need the setup in /etc/fstab:

home.local:/exports/coldstore /mnt/coldstore nfs noatime,noauto 0 0
home.local:/exports/storage /mnt/storage nfs noatime,auto 0 0
home.local:/exports/media /mnt/media nfs noatime,auto 0 0
home.local:/exports/pictures /mnt/pictures nfs noatime,auto 0 0

Then run sudo exportfs -a to make sure we know about this. Finally, just to be sure, try

29

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

sudo systemctl restart nfs-kernel-server

13.1 Links

• https://unix.stackexchange.com/questions/106122/mount-nfs-access-denied-by-server-while-mounting-on-ubuntu-machines

30 Chapter 13. NFS

https://unix.stackexchange.com/questions/106122/mount-nfs-access-denied-by-server-while-mounting-on-ubuntu-machines

CHAPTER 14

Snapshots

We use Sanoid https://github.com/jimsalterjrs/sanoid to automatically create and prune ZFS snapshots. Note this
is a backup server, so we don’t need hourly snapshots for the users because we’re only fed their stuff once a day
anyway.

Sanoid is not part of the Ubuntu distribution, so we need to set it up from the GitHub repository.

sudo apt install libconfig-inifiles-perl
cd /opt
sudo git clone https://github.com/jimsalterjrs/sanoid
sudo ln /opt/sanoid/sanoid /usr/sbin/
sudo mkdir /etc/sanoid
sudo cp /opt/sanoid/sanoid.conf /etc/sanoid/sanoid.conf
sudo cp /opt/sanoid/sanoid.defaults.conf /etc/sanoid/sanoid.defaults.conf

In /etc/sanoid.conf we have the templates and the datasets they refer to.

[tank/coldstore]
use_template = archive

[tank/h_user3]
use_template = slacker

[tank/h_user2]
use_template = backup

[tank/h_user1]
use_template = busybee

[tank/h_user4]
use_template = slacker

[tank/media]
use_template = archive

[tank/pictures]
use_template = archive

[tank/storage]
use_template = archive

(continues on next page)

31

https://github.com/jimsalterjrs/sanoid

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

(continued from previous page)

[tank/texts]
use_template = archive

TEMPLATES

User who only occasionally logs in. We want to be able to catch when they
come the next day and says "dude, I lost my file"
[template_slacker]

frequently = 0
hourly = 0
daily = 7
weekly = 4
monthly = 4
yearly = 1
autosnap = yes
autoprune = yes

User who does a lot of work and could lose a lot
[template_busybee]

frequently = 0
hourly = 0
daily = 31
weekly = 0
monthly = 12
yearly = 1
autosnap = yes
autoprune = yes

Backup for people whose data comes from outside and is transferred by rsync.
[template_backup]

frequently = 0
hourly = 0
daily = 7
weekly = 4
monthly = 12
yearly = 1
autosnap = yes
autoprune = yes

Backup for media files and other archived data. We usually don't
delete anything in these datasets, but only add stuff, so we want
to avoid cryptolocker attacks and catch "oops" accidents.
[template_archive]

frequently = 0
hourly = 0
daily = 3
weekly = 1
monthly = 3
yearly = 0
autosnap = yes
autoprune = yes

Edit /etc/crontab by hand (we don’t care about skipping one hour during daylight savings transition):

*/5 * * * * root /usr/sbin/sanoid --cron

After about five minutes, you’ll see snapshots appearing when you run zfs list -t snapshot.

32 Chapter 14. Snapshots

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

Note: The datasets used for Time Backups are not snapshotted.

14.1 Deleting snapshots

Use the -n switch to test what we do before we do it. Format is

zfs destroy -vn <FIRST-SNAPSHOT>%<LAST-SNAPSHOT>

Where last snapshot is only the part after the @. For example:

zfs destroy -vn tank/h_user1@auto-20190303.0900-3m%auto-20190601.0900-3m

This will also tell you how much space will be freed. Do this with without -vn to pull the trigger.

14.1. Deleting snapshots 33

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

34 Chapter 14. Snapshots

CHAPTER 15

Rsync

We use rsync for backups from the Linux computers to the NAS.

Note: This is a rather crude way of doing things, left over from earlier setups. In future versions, this will
probably be replaced by zfs send/receive or Syncoid (https://github.com/jimsalterjrs/sanoid)

In the user file /home/user1/rsync_home.sh we put:

#!/bin/bash
rsync -az -e 'ssh -p 2019' --delete --exclude={.cache,.steam,.zfs,.dbus,go,snap} /
→˓home/user1/ user1@home.local:/tank/h_user1/bku_chell

We can test this with the rsync vn flags to be certain. Then, add crontab job with crontab -e:

05 17 * * * /home/user1/rsync_home.sh

For the other users, we need to generate ssh keys, such as user2. Then, on home as that user:

mkdir .ssh
vi .ssh/authorized_keys

Copy the public key id_rsa.pub content to that file. To test, run

ssh home.local -p 2019

once from user2’s account. Then, test as above (with nv) options:

rsync -az -e 'ssh -p 2019' --delete --exclude={.cache,.steam,.zfs,.dbus,snap} /
→˓home/user2/ user2@home.local:/tank/h_user2/bku_chell

Note: This line is the reason we do not issue a banner with sshd.

If that works, put it into a shell script like for user1 with a slightly different time:

25 17 * * * /home/user2/rsync_home.sh

Repeat the process with other users.

35

https://github.com/jimsalterjrs/sanoid

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

15.1 Links

• https://www.linode.com/docs/security/authentication/use-public-key-authentication-with-ssh/

• https://jrs-s.net/2016/09/15/zfs-snapshots-and-cold-storage/

• https://blog.fosketts.net/2016/08/18/migrating-data-zfs-send-receive/

36 Chapter 15. Rsync

https://www.linode.com/docs/security/authentication/use-public-key-authentication-with-ssh/
https://jrs-s.net/2016/09/15/zfs-snapshots-and-cold-storage/
https://blog.fosketts.net/2016/08/18/migrating-data-zfs-send-receive/

CHAPTER 16

Firewall

We have the advantage that there is an actual terminal hooked up to the server, so we can just walk over and
configure stuff by hand if it doesn’t work. In other words, we can be very restrictive. The goals:

1. Everybody can access Emby

2. The Apple computers can access Time Machine

3. Everybody on the local net can access Glances

4. Core is the jump server for home, so chell can ssh; worker needs to ssh into home for backups

5. We need to allow access to Avahi (mDNS) to all in the local network

6. Allow NFS access from chell

Out of the box, we get an “inactive” with

sudo ufw status

Which is good. First we start with the basics:

sudo ufw default deny incoming
sudo ufw default allow outgoing

Then we explicitly reject ssh via the normal port 22 (don’t leave the user hanging, because this will be a simple
mistake that will be made often):

sudo ufw reject ssh

For the other goals:

Goal 1: Emby

sudo ufw allow to any port 8096 comment 'Emby HTTP'

Goal 2: Time Machine access from mediator

sudo ufw allow from 192.168.13.22 to any port 548 comment 'TM from mediator'
sudo ufw allow from 192.168.13.22 to any port 427 comment 'TM from mediator'

Goal 3: Glances from local network

37

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

sudo ufw allow from 192.168.13.0/24 to any port 61208 comment 'Glances'

Goal 4: Allow ssh from chell and worker

sudo ufw allow proto tcp from 192.168.13.20 to any port 2019 comment 'ssh from
→˓chell'
sudo ufw allow proto tcp from 192.168.13.21 to any port 2019 comment 'ssh from
→˓worker'

Goal 5: Allow mDNS

sudo ufw allow mdns comment 'mDNS'

Goal 6: Allow NFS access from chell This is more tricky, because the mountd changes the port by default.

Edit /etc/default/nfs-kernel-server and change the line

RPCMOUNTDOPTS="--manage-gids"

and make it into

RPCMOUNTDOPTS="--port 33333"

This is just a number that was easy to remember. Now restart the server.

sudo service nfs-kernel-server restart

Add the correct firewall rules:

sudo ufw allow from 192.168.13.20 to any port nfs comment 'NFS from chell'
sudo ufw allow from 192.168.13.20 to any port 111 comment 'NFS from chell'
sudo ufw allow from 192.168.13.20 to any port 33333 comment 'NFS from chell'

Disable and re-enable the firewall.

Status verbose gives us:

To Action From
-- ------ ----
5353 ALLOW IN Anywhere # mDNS
2019/tcp ALLOW IN 192.168.13.20 # ssh from chell
2019/tcp ALLOW IN 192.168.13.21 # ssh from worker
8096 ALLOW IN Anywhere # Emby HTTP
548 ALLOW IN 192.168.13.22 # Time Machine from mediator
427 ALLOW IN 192.168.13.22 # Time Machine from mediator
61208 ALLOW IN 192.168.13.0/24 # Glances
22/tcp REJECT IN Anywhere # No SSH over normal port
2049 ALLOW IN 192.168.13.20 # NFS from chell
111 ALLOW IN 192.168.13.20 # NFS from chell
33333 ALLOW IN 192.168.13.20 # NFS from chell
5353 (v6) ALLOW IN Anywhere (v6) # Allow Zero Config
8096 (v6) ALLOW IN Anywhere (v6) # Emby HTTP
22/tcp (v6) REJECT IN Anywhere (v6) # No SSH over normal port

Administration stuff that might come in handy:

sudo ufw enable # start the firewall
sudo ufw status verbose # what's going on
sudo ufw app list # who can pierce the firewall
sudo iptables -L # list of rules
sudo ufw disable # stop the firewall

Test with various machines to see if we can log in / do time machine / play videos.

38 Chapter 16. Firewall

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

16.1 Links

• https://www.cyberciti.biz/faq/how-to-setup-a-ufw-firewall-on-ubuntu-18-04-lts-server/

• https://www.digitalocean.com/community/tutorials/how-to-set-up-a-firewall-with-ufw-on-ubuntu-18-04

• https://help.ubuntu.com/community/UFW

• https://wiki.ubuntu.com/UncomplicatedFirewall

• http://manpages.ubuntu.com/manpages/bionic/en/man8/ufw.8.html

• https://wiki.debian.org/SecuringNFS

• https://serverfault.com/questions/377170/which-ports-do-i-need-to-open-in-the-firewall-to-use-nfs-

16.1. Links 39

https://www.cyberciti.biz/faq/how-to-setup-a-ufw-firewall-on-ubuntu-18-04-lts-server/
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-firewall-with-ufw-on-ubuntu-18-04
https://help.ubuntu.com/community/UFW
https://wiki.ubuntu.com/UncomplicatedFirewall
http://manpages.ubuntu.com/manpages/bionic/en/man8/ufw.8.html
https://wiki.debian.org/SecuringNFS
https://serverfault.com/questions/377170/which-ports-do-i-need-to-open-in-the-firewall-to-use-nfs

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

40 Chapter 16. Firewall

CHAPTER 17

Tests

We use Lynis to look for security holes. Unfortunately, Ubuntu (again) contains an old version. The following is
how get the newest version:

dpkg -s apt-transport-https | grep -i status

Shows us that the HTTPS transport is not installed. Do this with

sudo apt-get install apt-transport-https

Now that we can use HTTPS we can install the program itself.

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
→˓C80E383C3DE9F082E01391A0366C67DE91CA5D5F
echo "deb https://packages.cisofy.com/community/lynis/deb/ stable main" | sudo tee
→˓/etc/apt/sources.list.d/cisofy-lynis.list
sudo apt update
sudo apt install lynis

Finally we’re ready to rock:

sudo lynis audit system | less -R

Walk through the output and figure out how to secure stuff.

cat /var/log/lynis.log | grep Suggestion

17.1 Links

• https://packages.cisofy.com/community/#debian-ubuntu

• https://www.digitalocean.com/community/tutorials/how-to-perform-security-audits-with-lynis-on-ubuntu-16-04

• https://cisofy.com/lynis/controls/

41

https://packages.cisofy.com/community/#debian-ubuntu
https://www.digitalocean.com/community/tutorials/how-to-perform-security-audits-with-lynis-on-ubuntu-16-04
https://cisofy.com/lynis/controls/

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

42 Chapter 17. Tests

CHAPTER 18

Speed

These are tests performed with a 1 GBit Ethernet connection. To test the connection speed with iperf, install it
first on both machines, chell and home.

sudo apt install iperf3

On home, start the server (-f M gives format in MB/sec)

iperf3 -s -f M

Now iperf will tell us which port it is listening at. We have to open the firewall for testing:

sudo ufw allow 5201

On chell, start the client with :

iperf3 -f M -c home.local

This gives us 112 MB/sec for memory-to-memory transfers, as expected over a 1 GBit Ethernet connection. Disk
to memory test gives us the same thing, with this on chell (the sender):

iperf3 -f M -c home.local -i1 -t 40

For memory-to-disk, we start the server on home (with CWD as /home/user1 on an SSD)

iperf3 -s -f M -F test

the receiving end. This gives us about 13.4 MB/sec from memory to a SSD. We can also test with storing the data
on one of the ZFS pool datasets (currently 2 x RaidZ three-disk VDEV) :

iperf3 -s -f M -F /tank/h_user1/test

This gives us 9.7 MB/sec from memory to HD RaidZ.

On home, remember to close the firewall again and to delete the test files,

sudo ufw deny 5201
rm test
rm /tank/h_user1/test

43

Scot’s Ubuntu NAS Documentation, Release 0.1.0beta

18.1 Summary

Type Network Speed
mem-to-mem 1 GBit 112 MB/sec
mem-to-ssd (ext4) 1 GBit 13.4 MB/sec
mem-to-hd (ZFS) 1 GBit 9.7 MB/sec

18.2 Links

• https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf/disk-testing-using-iperf/

44 Chapter 18. Speed

https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf/disk-testing-using-iperf/

CHAPTER 19

Indices and tables

• genindex

• modindex

• search

45

	Introduction
	Goals
	House overview
	Network
	NAS duties
	Threat assessment
	NAS overview

	Hardware
	Motherboard
	Drives
	Extra cooling fan
	Other hardware
	IPMI
	BIOS
	LSI interface

	Ubuntu Server
	Memory Test
	Basic installation

	Livepatch
	Links

	Services
	mDNS (Avahi)
	Network
	SSH

	Users
	Mail
	Links

	SMART
	Links

	UPS
	Links

	ZFS
	The current setup
	Email notifications

	Containers
	Glances
	Emby
	Watchtower
	Time Machine
	Links

	NFS
	Links

	Snapshots
	Deleting snapshots

	Rsync
	Links

	Firewall
	Links

	Tests
	Links

	Speed
	Summary
	Links

	Indices and tables

